首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   15篇
综合类   16篇
基础理论   32篇
污染及防治   10篇
社会与环境   1篇
  2022年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
钒对水稻种子萌发及幼苗生长的影响   总被引:1,自引:0,他引:1  
通过室内培养的方法,研究了不同浓度钒处理对金优63、T优259两个不同品种水稻种子萌发、幼苗生长及部分生理生化指标的影响。结果表明:低浓度的钒处理能在一定程度上促进两种水稻种子的萌发及幼苗的生长,但随着钒污染浓度的增高,逐渐受到抑制,且根长受影响的程度大于芽长。从生长和生理生化各指标变化情况来看,不同浓度钒处理下,两种水稻幼苗根系脱氢酶活性与叶绿素含量均呈先升后降的变化趋势。T优259对钒污染的抗性大于金优63。  相似文献   
2.
Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg−1 and 3000 mg kg−1-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of −250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d−1 was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L−1) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element.  相似文献   
3.
The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants.  相似文献   
4.
Paddy fields in mining areas are usually co-contaminated by a cocktail of mixed toxic heavy metals (e.g., Cd and Pb in Pb/Zn mines). However, previous studies on rice cultivars screened for effective metal exclusion have mostly focused on individual metals, and have been conducted under pot-trial or hydroponic solution conditions. This study identified rice cultivars with both low Cd and Pb accumulation under Cd-and Pb-contaminated field conditions, and the interactions of the toxic elements Cd and Pb with the micronutrient elements Fe, Zn, Mn and Ni were also studied. Among 32 rice cultivars tested, there were significant differences in Cd (0.06-0.59 mg/kg) and Pb (0.25-3.15 mg/kg) levels in their brown rice, and similar results were also found for the micronutrient elements. Significant decreases in concentrations of Fe and Mn were detected with increasing Cd concentrations and a significant elevation in Fe, Mn and Ni with increasing Pb concentrations. A similar result was also shown by Cd and Ni. Three cultivars were identified with a combination of low brown rice Cd and Pb, high micronutrient and grain yield (Wufengyou 2168, Tianyou 196 and Guinongzhan). Present results suggest that it is possible to breed rice cultivars with low mixed toxic element (Cd, Pb) and high micronutrient contents along with high grain yields, thus ensuring food safety and quality.  相似文献   
5.
在低磷(1mg L-1)和适磷水平(10mg L^-1)下,分别以混合培养方式研究了粳稻京系17(Oryza sativa ssp.japonica)(JX17)和粘稻窄叶青8号(Oryza sativa ssp.indica)(ZYQ8)对磷营养的反应。结果表明,低磷胁迫下,JX17较ZYQ8吸收更多磷素,干物重也显著增加。相反,ZYQ8则受到更强的磷胁迫,吸磷量和干物重降低,主要是因为JX17具有较高的吸磷速度,单位根长吸磷量大,即根系高亲和力磷酸盐转运蛋白表达强,最大限度地吸收可能利用的磷素,从而改善植株营养状况,同时又有较多的磷被分配到根系,使根第,根表面积和根干重相应提高,进一步增加了其在低磷胁迫条件下的竞争磷营养的优势。图3表2参17  相似文献   
6.
多环芳烃在水稻植株中的分布   总被引:5,自引:0,他引:5  
采集了天津东丽区幼穗期、蜡熟期和枯熟期的水稻植株样品,研究了多环芳烃在其不同器官中的分布.研究结果表明,水稻根中PAH15含量在幼穗期之后不断增加,至枯熟期达到土壤浓度的3倍.茎叶中PAH15含量则从幼穗期到枯熟期呈现逐渐下降的一般趋势,且穗梗含量高于稻茎,第一叶含量高于下叶.水稻籽实成熟期间生物量迅速增加,其增速高于PAH15累积,这样的稀释作用造成表观浓度的下降.水稻地上部分各器官PAH15含量与脂含量之间具有显著的正相关关系.图5参12  相似文献   
7.
To understand certain mechanisms causing variations between rice cultivars with regard to cadmium uptake and tolerance, pot soil experiments were conducted with two rice cultivars of di erent genotypes under di erent soil Cd levels. The relationships between plant Cd uptake and iron/manganese (Fe/Mn) plaque formation on roots were investigated. The results showed that rice cultivars di ered markedly in Cd uptake and tolerance. Under soil Cd treatments, Cd concentrations and accumulations in the cultivar Shanyou 63 (the genotype indica) were significantly higher than those in the cultivar Wuyunjing 7 (the genotype japonica) (P < 0.01, or P < 0.05), and Shanyou 63 was more sensitive to Cd toxicity than Wuyunjing 7. The di erences between the rice cultivars were the largest at relatively low soil Cd level (i.e., 10 mg/kg). Fe concentrations in dithionite-citrate-bicarbonate root extracts of Shanyou 63 were generally lower than that of Wuyunjing 7, and the di erence was the most significant under the treatment of 10 mg Cd/kg soil. The results indicated that the formation of iron plaque on rice roots could act as a barrier to soil Cd toxicity, and may be a “bu er” or a “reservoir” which could reduce Cd uptake into rice roots. And the plaque may contribute, to some extent, to the genotypic di erences of rice cultivars in Cd uptake and tolerance.  相似文献   
8.
The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg−1 and 1000 mg·kg−1). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg−1, the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg−1)>moderate Pb stress (500 mg·kg−1)>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.  相似文献   
9.
水稻(Oryza.sativa L.)是我国最重要的粮食作物之一,水稻产量占粮食总产量的一半以上,一旦水稻受到重金属污染,将会影响水稻植株的正常生长和生理特性。目前关于钒胁迫对水稻植株生理特性指标的影响方面报道较少。通过水培实验,研究了不同钒(V)质量浓度(0、4、8、12、16、20 mg·L-1)对水稻幼苗(Oryza.sativa L)生理生化和富集特性的影响。结果表明:随着V胁迫浓度的增加,叶绿素含量、可溶性蛋白含量、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)等均呈现先上升、后下降的变化趋势。当ρ(V)≤12 mg·L-1,与对照相比较,叶绿素含量、可溶性蛋白含量和酶活性增大了135.3%、104.2%、77.8%(CAT)、84.5%(POD)和273.2%(SOD);当ρ(V)〉12 mg·L-1,则分别降低37.2%、39.4%、41.1%、24.1%和24.5%。随着 V 胁迫浓度的增加,丙二醛(MDA)含量和细胞膜透性逐渐增大,与对照相比,分别增加了38.5%~289.3%、21.2%~303.2%,根系活力下降了10.9%~82.2%。可见,低ρ(V)(≤12 mg·L-1)对水稻幼苗的生长有一定的刺激作用,水稻幼苗自身保护酶表现出较强的自我调节能力;高ρ(V)(〉12 mg·L-1)明显抑制叶绿素和蛋白合成、抗氧化酶活性和根系活力,伤害了细胞质膜系统,影响水稻幼苗的生长发育。不同V浓度胁迫下,水稻幼苗累积的V含量为:根〉茎叶。随着V胁迫浓度增加,水稻幼苗各器官V含量增大,其中根部增幅远大于茎叶,当ρ(V)从5 mg·L-1增加到40 mg·L-1,与对照相比较,根部增加了0.98~25.3倍,茎叶部增加了0.26~4.74倍。生物富集系数(BF)先增加后降低,最大值为2.8408;迁移系数(TF)下降,最低值为0.1170,说明水稻对V有较强的富集能力,但迁移能力较低,积累的V主要富集在根部,可减轻V对地上部植物的危害。  相似文献   
10.
以21个水稻品种(包括常规稻、二系杂交稻、三系杂交稻)为材料,通过室内盆栽试验探讨了Cu在不同品种水稻根-茎-叶-籽粒(糙米)中的积累分配的差异。结果表明,供试水稻品种根、茎、叶、籽粒中Cu含量的均值分别是67.35、16.24、8.29、11.62mg·kg-1,多数水稻品种Cu的含量顺序是根茎籽粒(糙米)叶,但也有少部分水稻品种Cu的含量顺序是根籽粒(糙米)茎叶。各器官的Cu含量在不同品种间存在显著差异,其中以根和籽粒Cu含量的差异最大,茎次之,叶最小。常规稻根部Cu含量显著低于杂交稻,而叶中Cu含量显著高于杂交稻,但两者的茎和籽粒中Cu含量没有明显的差异。三系杂交稻根、茎、籽粒Cu含量显著高于二系杂交稻,而叶的Cu含量两者差异不显著。不同遗传背景的水稻各器官对Cu积累也存在不同程度的差异。相关分析结果表明,不同品种水稻相邻器官(根与茎,茎与叶)的Cu含量呈极显著正相关,相间器官(根与叶、籽粒,茎与籽粒)的Cu含量呈显著正相关,地上部各器官Cu的转运系数相互之间呈极显著的正相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号